Cauchy problem for fractional diffusion-wave equations with variable coefficients
نویسندگان
چکیده
منابع مشابه
The Cauchy Problem for Wave Equations with non Lipschitz Coefficients
In this paper we study the Cauchy problem for second order strictly hyperbolic operators of the form
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملLinear fractional differential equations with variable coefficients
This work is devoted to the study of solutions around an α-singular point x0 ∈ [a, b] for linear fractional differential equations of the form [Lnα(y)](x) = g(x, α), where [Lnα(y)](x) = y(nα)(x)+ n−1 ∑ k=0 ak(x)y (kα)(x) with α ∈ (0, 1]. Here n ∈ N , the real functions g(x) and ak(x) (k = 0, 1, . . . , n−1) are defined on the interval [a, b], and y(nα)(x) represents sequential fractional deriva...
متن کاملThe Cauchy Problem for Wave Equations with Non Lipschitz Coefficients; Application to Continuation of Solutions of Some Nonlinear Wave Equations
متن کامل
Gegenbauer spectral method for time-fractional convection–diffusion equations with variable coefficients
In this paper, we study the numerical solution to time-fractional partial differential equations with variable coefficients that involve temporal Caputo derivative. A spectral method based on Gegenbauer polynomials is taken for approximating the solution of the given time-fractional partial differential equation in time and a collocation method in space. The suggested method reduces this type o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis
سال: 2014
ISSN: 0003-6811,1563-504X
DOI: 10.1080/00036811.2013.875162